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In this paper, we propose a new method for clustering of chemical databases based
on the representation of measurements of structural similarity onto multidimensional
spaces. The proposed method permits the tuning of the clustering process through the
selection of the dimension of the projection space, the normal vectors and the sensibil-
ity of the projection process. The structural similarity of each element regarding to the
database elements is projected onto the defined spaces generating clusters that represent
the characteristics and diversity of the database and whose size and characteristics can
be easily adjusted.
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1. Introduction

The size of all chemical databases is increasing dramatically every year; so
powerful searching algorithms are necessary for these databases to be used effi-
ciently by researchers and industry. Usually the process of information recovery
consists of a screening stage where a set of molecules satisfying search criteria is
recovered from the database, and a matching stage in which the molecules recov-
ered are compared to each other atom by atom search stage (ABAS) [1–3].

The ABAS stage is the one with the highest computational cost required.
This computational cost is inversely proportional to the size of the set of mole-
cules recovered in the screening stage.

The behavior of the screening stage depends on: (a) the complexity of the
search criteria, and (b) how the database is organized according to the variables
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used in the search criteria. Therefore, clustering techniques are absolutely
necessary in order to optimize the global process [4–7].

Cluster analysis techniques are designed in order to find groups, or clus-
ters, in data sets, where each member of a cluster is similar to the other mem-
bers of the cluster based on a given set of characteristics. They have been widely
applied in chemical structure handling applications, particularly for finding clus-
ters of compounds with similar structures or physical properties. Different types
of clustering algorithm can be used for chemical structure handling applications.
These generally fall into one of two categories: hierarchical or non-hierarchical
methods. In hierarchical methods, a hierarchical tree structure is produced, and
taking slices across the hierarchy at different levels yields distinct clusterings of
the data set. Non-hierarchical methods generally produce a single clustering of
a data set without any hierarchical relationships.

Cluster analysis provides a number of methods to obtain an insight into
data sets, and to extract relevant information from them. This analysis is the
most important tool used for interpreting multivariate data containing objects
and features, and sometimes also properties. Cluster analysis generically refers
to different multivariate methods designed to create homogeneous sets of objects
(chemical compounds) called clusters. So, each chemical compound is charac-
terized by a set of properties, a numerical variable (in this paper – a mea-
sure of the relative structural similarity among database elements) such as
concentration, temperature, or reaction time. These data are best described by
a matrix, containing a row for each of the database elements, and a column for
each property. Therefore, each database element corresponds to a point in the
N -dimensional property space. Graphic representation of the data structure of
N -dimensional picture area as two or three-dimensional drawings may be help-
ful in the evaluation of the results obtained.

The property space considered in the clustering method proposed is based
on the calculation of the measurements of structural similarity among the ele-
ments of the chemical database and the consideration of these values in intervals
of values.

Given two molecular graphs G A and G B representing the structure of
chemical compounds A and B, respectively, it is possible to obtain a set M of
all the maximum common substructures among G A and G B graphs [8]. Each ele-
ment M(i) of the M set is composed by a set of nodes and edges present in G A
and G B graphs (atoms and bonds present in A and B molecules), for which the
M set represents the maximum overlapping or the maximum matching among
the molecular graphs G A and G B .

So, for a database of chemical compounds with db elements, a symmetri-
cal S matrix can be obtained with information of the maximum overlapping set
(MOS) between each pair of database elements (i, j), and therefore (db2 −db)/2
values of structural similarity, which can be obtained in one or several of the
commonly accepted similarity indexes [9,10].



G. Cerruela Garcı́a et al. / Projection of maximum overlapping sets 215

In this paper, we propose a clustering method based on the MOS
measurements and the projection of these values onto different spaces that repre-
sent similarity intervals representing the relative similarity of a molecule regard-
ing to the elements of a chemical database.

The article has been organized in the following way: in section 2, the theo-
retical model is described on which the classification process is based, in section
3, the parameters or variables that intervene in the classification process are stud-
ied, since the tuning of these parameters determines the effectiveness of the pro-
cess; two different classification methods are analyzed and the results obtained
are analyzed on a database of natural products. Lastly, we present a discussion
of these results and the validity of the proposed method is presented with a
screening example on the database utilized.

2. Description of the clustering method

The clustering process requires a pre-processing stage in which the similar-
ity values for each pair of the database elements is calculated.

The calculation of the structural similarity between two molecular graphs
is a complex process that requires a high-computational cost [8,11]. These mea-
sures of structural similarity are based on the subgraph isomorphism calculation
among the molecular graphs that are compared, and two different approaches
can be considered: (a) Maximum Common Edges Subgraph (MCES) and (b)
Maximum Common Subgraph (MCS).

Knowing the isomorphism among two molecular graphs (number of com-
mon nodes and edges), a distance measure or similarity index is used to obtain
a measure of the structural or topological “resemblance” between two molecu-
lar graphs. Different indexes of similarity have been proposed in the literature
(Tanimoto, Simpson, Kolcynski, Cosine, etc.) and their behavior and degeneracy
has been studied in function of the graph, size, and density of the fingerprints,
etc. [12].

The proposed method of clustering in this paper, in this preprocessing stage,
uses the subgraphs isomorphism algorithm proposed by the authors [8] given its
computational efficiency and the possibility of obtaining different isomorphism
measures such as: MCES, MCS, AMCS (All MCS). The similarity measures
considered in this paper have been obtained considering the subgraph isomor-
phism based on the MCS and the cosine index (Ochiai index), a commonly uti-
lized similarity index due to its presenting little degeneration with the variation
of graph size. This index is given by the following expression:

s = (nc + ec)√
(ni + ei )(n j + e j )

, (1)
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where: ni and ei are the number of nodes and edges of the molecular graph
Gi , n j , and e j are the number of nodes and edges of the molecular graph G j , nc,
and ec are the common nodes and edges to both graphs.

When this process is carried out for the db database elements, a symmetri-
cal similarity matrix S is obtained, in which the element S(i, j) stores the simi-
larity value between the Gi and G j molecular graphs.

When the information corresponding to the similarity values among all the
elements of the database is obtained, the clustering process is carried out in four
steps: (a) definition of the projection space, an N -dimensional space (N << db),
(b) the projection process of the similarity values stored in S matrix in the
defined N -dimensional space is carried out so that, each database element can
be represented by means of a vector N size, (c) the projection vector of each ele-
ment of the database is normalized in the N -dimensional space of similarity, and
(d) the process of clusters generation is carried out and the database elements are
assigned to the defined clusters.

2.1. Definition of the projection space

The similarity measures among any two database elements are given in the
interval [0,1]. The proposed clustering method consists of considering different
intervals of similarity inside this range and considering each of these intervals as
a dimension in which the database elements can be represented. The number of
defined intervals determines the dimension of the projection space and, therefore,
the number of characteristic or variables in those where each database element
is represented.

So, at this stage the number and range of the intervals of similarity values in
which the database will be projected are selected. The similarity intervals deter-
mine the granularity of the clustering process. As the number of similarity intervals
increases (and therefore are smaller in size) the granularity of the clustering process
also increases, and vice versa. As the granularity increases the number of generated
clusters also increases and therefore the clusters population diminishes.

In the proposed clustering method the number and size of the similarity
intervals is dynamic and can be conveniently adjusted according to the results
observed. So, an I array is defined corresponding to the similarity intervals, where:

• Each element I (i) defines an interval of similarity [x, y], where y > x .

• The first element I (1) is an interval defined as [0, y].
• The last element I (N ) is an interval defined as [x, 1], where N represents

the number of dimensions of the projection space.

• The defined intervals of similarity in the I array are disjoint intervals, so
that xk > yk−1.
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2.2. Projection of the database elements

Once the projection space is selected, for each row of the S matrix (each
database element) a vector of dimensions equal to N representing the rela-
tive similarity of each element regarding the remaining database elements is
obtained.

We have proposed two different methods in order to test the behavior of
the clustering process regarding the consideration of the characteriztics (diver-
sity) of the database (Method A) and the characteriztics of each database ele-
ment (Method B):

Method A: Each row of the S matrix (each database element) is represented
by means of a vector of N elements, as follows:









∑

j

I (1)

S(i, j)

I (1)

Mdb

,

∑

j

I (2)

S(i, j)

I (2)
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,

∑

j

I (3)

S(i, j)

I (3)
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, . . . ,

∑

j

I (N )

S(i, j)

I (N )

Mdb









, (2)

where:
I (k)

S(i, j) represents the similarity value obtained from the MOS between

the elements i and j , included in the I (k) interval, and
I (k)

Mdb represents the total
number of matching of the database whose similarity value is included in the
I (k) interval.

Method B: In this case, the property vector for each database element is
obtained as follows:


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I (1)
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,

∑
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, . . . ,

∑
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I (N )

S(i, j)

I (N )
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







, (3)

where:
I (k)

S(i, j) represents the similarity value, obtained from the MOS between

the elements i and j , included in the I (k) interval, and
I (k)

Mi represents the num-
ber of matching of i element (with the remaining database elements) included in
I (k) interval.

Once the vectors representing each database element are obtained, the data-
base can be represented by means of a B matrix of size (db, N ). This B matrix
can be normalized in the interval [0,1] that bears the normalization of the pro-
jection space, in the following way:

∀k, B(i, j) = B(i, j) − min(B(k, j))

max(B(k, j)) − min(B(k, j))
. (4)
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2.3. Grid definition and database clustering

In this step the clusters are defined and the database elements are assigned
to them. So, we build a grid of the projection space. This grid consists of the
construction of a set of N -dimensional cells or bins whose size can be equal or
different in each dimension.

The grid size, together with the number of dimensions determine the maxi-
mum number of classes or clusters in which the database elements are classified,
which is given by the following expression:

Maximum number of classes =
N∏

i=1

1
(grid)i

. (5)

Once the grid is built, each database element is assigned to one of the gen-
erated cells, and a series of parameters used to analyze the usefulness of the clus-
tering process is calculated (see table 1 and 2) as follows.

• The average similarity of the database (ASDB). This value depends only
on the database characteristics, and it is independent of the method and
parameters used in the clustering process.

• The number of classes (CT), average of cluster population (APC), the
percentage of singletons and doubletons.

• The entropy of the clustering process (CE) and the number of effective
cluster (ENC) [13] are calculated from the following expression:

CE = −
q∑

i=1

fi log2 fi , (6)

where: q is the clusters number and fi = ni
db is the population frequency

in each cluster, calculated as the ratio between the population of each
cluster (ni ) and the number of database elements (db). Knowing CE, the
effective number of clusters can be calculated as follows ENC = 2CE.

• A representative (centroid) of each cluster is selected as follows: (a) the
similarity among the cluster elements is calculated (it has already been
calculated previously in the preprocessing stage), (b) the average Ak(i)
and variance Vk(i) of the similarity value obtained for each element i of
the class and the average Ak and variance Vk for the class k are calcu-
lated. Then the class element whose difference |Ak(i)− Ak | is the smallest,
is chosen as representative (Rk) of Bk class.

• The average of similarity of the clusters (ASL). This value is calculated as
ASDB value, but using the representatives of each class in the calculation
instead of all the database elements.
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• The Cartesian center (gravity) of the clustering (GCC). This value corre-
sponds to a point in the projection space whose distance to the rest of
the points is the smallest.

• The Cartesian center (gravity) of the clusters or classes (GCL). This value
is calculated in a similar way to the GCC using in the calculation the rep-
resentatives of each class instead of all the database elements.

• Some dispersion parameters are also obtained in order to evaluate the
characteristics and effectiveness of the clustering process: (a) the disper-
sion of the representatives (RD), obtained as the sum of the Euclidean
distances among all the representatives of the classes, (b) the dispersion
of the clustering (CD), obtained as the sum of the Euclidean distances
between all the representatives and the gravity center of the clustering
and (c) the dispersion of the cluster or classes (LD), obtained as the sum
of the Euclidean distances between all the representatives and the gravity
center of the clusters.

The information obtained and the selected representatives are the basis of
the proposed clustering method. The computational cost of this calculation is
reasonably low since it is carried out in the preprocessing stage when the sim-
ilarities among each database elements are calculated, that information can be
used in the processing stage.

3. Analysis of the results

The tests of the proposed clustering method have been carried out using a
PC Pentium II 400 MHz on a public domain database of natural compounds [14]
composed of 498 elements. The average of the similarity of the database (ASDB)
is 0.5700.

3.1. Influence of the clustering parameters

In the test development we have used different grids (0.05, 0.1, and 0.2) and
different projection spaces (2D, 3D, and 4D) where three different values of sim-
ilarity intervals have been defined for each one.

In tables 1 and 2 the values of the studied parameters in the classification
process for the two proposed methods are shown, which are used to analyze the
process usefulness.

As we can observed, the number of dimensions (N ) of the projection space
(size of the array I ) considerably influences the classification process. As N
increases the number of classes in those whose database elements are classified
also increases. Evidently, an increase in the dimension of the projection space
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generates an increase in the total number of possible clusters (expression 5),
which produces a disperse projection of the database elements in the generated
grid, shown by the increase in other parameters studied (CE, ENC, %S, %D,
etc.) and, evidently, a decreasing in the average of the population of the clusters
(APC), this is an effect that is independent of the grid size.

This behavior can be observed in figures 1–3, where the clusters number
and the population of the clusters for the different values of N and intervals of
similarity for the two proposed classification methods are represented.

The grid size is a decisive parameter in the behavior of the classification
process. Evidently, an increase in the grid size generates a decrease in the num-
ber of cells in which the database elements are stored and, therefore, it pro-
duces a decrease in the clusters number (tables 1 and 2). Thus, an increase in
the grid size generates more populated clusters (APC increases) and it produces
a decrease in the singletons (%S) and doubletons (%D) percentage, diminishing
the parameters that measure the clustering dispersion (RD, CD, LD), and pro-
ducing a centering of the clusters in the projection space (GCL).

The value of the similarity intervals is another decisive parameter in the
behavior of the classification process. The influence of this parameter depends on
the database characteristics, that is, of the compounds diversity. Thus, the values
of the similarity intervals affect the classification process, depending on the sim-
ilarity among the database elements.

As tables 1 and 2 show, the similarity intervals close to ASDB value are
those that most affect the behavior of the classification process. As this interval
is higher, the cluster dispersion (RD) increases, whilst also increasing the value
of the average similarity of the clusters (ASL).

Figures 1–4 show the behavior of the classification process for different val-
ues of similarity intervals, dimension of projection space, and grid size for the
two classification methods studied.

As can be observed, method A leads to a lower number of clusters for the
same values of the classification parameters than method B. These clusters are
more populated (higher value of APC) and they are more grouped (lower value
of the parameters in charge of measuring the dispersion), and the elements of the
clusters are more diverse (lower value of ASL). This effect is because method A
considers the behavior of the entire database in the calculation (see the denom-
inator of expression 2) instead of the behavior of each element regarding to the
database (see expression 3).

Studying figure 4, it can be observed that method A is more influenced
by the values of the similarity intervals than method B. Method A spreads to
produce a more uniform distribution of the clusters in the projection space,
although this distribution is affected when partitions of intervals of similarity
close to the ASDB are generated. However, method B is able to find different
behaviors of the database elements, being influenced in smaller measure by this
parameter (see the dispersion parameters in tables 1 and 2). This effect induces
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Grid 0.20 0.10 0.05 
Method A 

[0.00 – 0.33] 
[0.33 – 1.00]

[0.00 – 0.50] 
[0.50 – 1.00]

[0.00 – 0.66] 
[0.66 – 1.00]

Method B 

[0.00 – 0.33] 
[0.33 – 1.00]

[0.00 – 0.50] 
[0.50 – 1.00]

[0.00 – 0.66] 
[0.66 – 1.00]

Figure 1. Behavior of the classification process using a 2D projection space for different values of
cell size, intervals of similarity and for the two proposed classification methods. X -axis shows the

clusters number and Y -axis shows the cluster population.
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Grid 0.20 0.10 0.05 
Method A 

[0.00 – 0.25] 
[0.25 – 0.50] 
[0.50 – 1.00]

[0.00 – 0.33] 
[0.33 – 0.66] 
[0.66 – 1.00]

[0.00 – 0.50] 
[0.50 – 0.75] 
[0.75 – 1.00]

Method B 

[0.00 – 0.25] 
[0.25 – 0.50] 
[0.50 – 1.00]

[0.00 – 0.33] 
[0.33 – 0.66] 
[0.66 – 1.00]

[0.00 – 0.50] 
[0.50 – 0.75] 
[0.75 – 1.00]

Figure 2. Behavior of the classification process using a 3D projection space for different values
of cell size, intervals of similarity for the two proposed classification methods. X -axis shows the

clusters number and Y -axis shows the cluster population.
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Grid 0.20 0.10 0.05 
Method A 

[0.00 – 0.15] 
[0.15 – 0.40] 
[0.40 – 0.60] 
[0.60 – 1.00]

[0.00 – 0.25] 
[0.25 – 0.50] 
[0.50 – 0.75] 
[0.75 – 1.00]

[0.00 – 0.40] 
[0.40 – 0.60] 
[0.60 – 0.80] 
[0.80 – 1.00]

Method B 

[0.00 – 0.15] 
[0.15 – 0.40] 
[0.40 – 0.60] 
[0.60 – 1.00]

[0.00 – 0.25] 
[0.25 – 0.50] 
[0.50 – 0.75] 
[0.75 – 1.00]

[0.00 – 0.40] 
[0.40 – 0.60] 
[0.60 – 0.80] 
[0.80 – 1.00]

Figure 3. Behavior of the classification process using a 4D projection space for different values
of cell size, intervals of similarity for the two proposed classification methods. X -axis shows the

clusters number and Y -axis shows the cluster population.
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Figure 4. Cluster Distribution in a 3D projection space for the two proposed projection methods
and for different values of cell size and intervals of similarity.

method B to produce clusters whose elements are more similar to each other
(higher value of ASL) and the clusters are more distributed throughout the pro-
jection space, independently of the dimension of this space. Thus, the distance
among the clusters generated by method B is markably higher than the generated
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by method A for a similar number of clusters and equal values of the projection
parameters, which allows us to consider this method useful for applications in
which the diversity of groups of molecules in databases is necessary.

3.2. Comparison with other classification methods

However, as the literature describes [2,3,15], it is difficult to carry out a
comparative study of different classification methods due to each method being
based on the use of different variables, measures of distance or similarity, etc.,
which leads to the generation of a different number of clusters and grouping
characteristic, we have carried out a comparative study of the clustering method
proposed regarding to two classic and traditionally utilized methods: (a) the hier-
archical method and (b) the K -means method.

As well as this, we have carried out a principal components analysis (PCA)
with the database under study. This technique is based on the projection of data-
base elements onto a multidimensional and orthogonal space (principal compo-
nents). When the classification parameter is the measure of similarity among the
database elements, PCA uses similarity matrix S.

Usually, PCA is used as a preparatory technique (unsupervised) of the clus-
tering process. This technique helps the researcher to find groups of elements,
which can then be used to carry out the database classification using a super-
vised technique [3,15].

As can be observe in figure 5, by means of the use of PCA technique it is
difficult to find groups of compounds, or these groups would be composed of a
high number of very diverse elements. The PCA has demonstrated that 32 prin-
cipal components are necessary to explain the 95% of the variance, explaining
the first three principal components (represented in figure 5) only 74.72%.

For an objective comparison with the hierarchical and K -means methods
we have used in both cases the similarity matrix S as input data and we have
imposed that the same clusters number is generated as those generated for our
classification model for some given classification parameters (size of the projec-
tion space, values of intervals of similarity, cell size), analyzing for each method
the similarity of the clusters and the dispersion of the clustering.

We have observed K -means and hierarchical methods generate clusters with
a similar average similarity to the proposed methods. However, our proposed
methods generate more dispersed clusters than K -means and hierarchical meth-
ods, as figure 6 shows.

In the graphs of figure 6, the sum of the normalized distance among the
clusters has been represented for the K -means, hierarchical methods and the
classification methods A and B proposed in this paper. As can be observed, for
different classification parameters and, therefore, different number and character-
istic of clusters, our classification models (blue-solid lines) generate, in all cases,
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Figure 5. Results of the principal component analysis with the database in study. A: 3D repre-
sentation of the first three principal components. B: PC1 versus PC2, C : PC1 versus PC3, D:

PC2 versus PC3.

more dispersed clusters than the K -means (red-dot lines) and hierarchical (line
green-dashed lines).

This characteristic shows that clusters are more dispersed in the classifica-
tion space, they are more varied, and therefore the projection of S matrix onto
spaces defined by intervals of similarity (model used in our proposal) improves
the classification of chemical databases regarding to the use of the similarity
matrix (used by other clustering models as K means or hierarchical).

4. Discussion and remarks

With a low-computational cost the classification method proposed in this
article presents an appropriate behavior for its use in chemical databases. This
computational cost is of the same order and even smaller than other classifica-
tion methods studied, without considering the preprocessing phase in which the
similarity matrix S is generated and the stage of extraction of the studied statis-
tics (equal for all the methods).

For instance, in the case of a cell size equal to 0.05, intervals of similarity
equal to (0.00 − 0.33.1.00) and the classification method A are needed only 1.2 s
while hierarchical methods need 1.9 s and K -means method needs 25.9 s (using
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Cell size 
0.05 Method A Method B 

[0.00 – 0.33] 
[0.33 – 1.00]

[0.00 – 0.25] 
[0.25 – 0.50] 
[0.50 – 1.00]

[0.00 – 0.40] 
[0.40 – 0.60] 
[0.60 – 0.80] 
[0.80 – 1.00]

Figure 6. Behavior of the proposed methods regarding K -means and hierarchical methods for
different clustering conditions.

Matlab [16] software and a PC Pentium II 400 MHz). Also, the computational
cost of the proposed methods is slightly influenced by the number of clusters
generated, while the hierarchical method is more influenced and K -means meth-
ods is the most influenced.

Moreover, the proposed method allows the generation of appropriate clus-
ters depending on the database characteristics and of the objectives pursued in
the classification process. Even for databases with few diverse elements in those



230 G. Cerruela Garcı́a et al. / Projection of maximum overlapping sets

where other statistical techniques are applied with difficult; the proposed method
can generate clusters with an acceptable average similarity.

So, the proposed clustering method permits building homogeneous groups
of molecules, allowing the development of useful screening process, as can be
observed in figure 7 where a screening example using the clustering methods A
and B on the database used in the description of this paper is shown, consider-
ing different projection spaces and using a grid of 0.05. In this example, we have
selected a chance molecule (in yellow frame in figure 7) as search pattern, and
for each of the different values of similarity intervals (in a 3D projection space)
we have recovered the cluster elements in those where the pattern molecule has
been classified.

The versatility of the proposed classification method allows us to readjust
the number of dimensions of the projection space, grid size, and the similarity
interval values, carrying out adjustments in the clustering until the desired state
is obtained, with a low computational cost.

[0.00 - 0.25 – 0.50 – 1.0] [0.00 - 0.33 – 0.66 – 1.0] [0.00 - 0.50 – 0.75 – 1.0] 

Method A 

Method B 

Figure 7. Example of screening for different intervals of similarity for the two clustering methods
proposed.
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Furthermore, method B allows finding groups of database elements with
different behavior to the half behavior of the database. This fact allows us to use
this classification method searching diversity in chemical databases.
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